The Algebra of the Nerves of Omega-categories

نویسنده

  • RICHARD STEINER
چکیده

We show that the nerve of a strict omega-category can be described algebraically as a simplicial set with additional operations subject to certain identities. The resulting structures are called sets with complicial identities. We also construct an equivalence between the categories of strict omega-categories and of sets with complical identities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$omega$-Operads of coendomorphisms and fractal $omega$-operads for higher structures

     In this article we introduce the notion of textit{Fractal $omega$-operad} emerging from  a natural $omega$-operad associated to any coglobular object in the category of higher operads in Batanin's sense, which in fact is a coendomorphism $omega$-operads. We have in mind coglobular object of higher operads which algebras are kind of higher transformations. It follows that this natural $omeg...

متن کامل

Local tracial C*-algebras

‎Let $Omega$ be a class of unital‎ ‎$C^*$-algebras‎. ‎We introduce the notion of a local tracial $Omega$-algebra‎. ‎Let $A$ be an $alpha$-simple unital local tracial $Omega$-algebra‎. ‎Suppose that $alpha:Gto $Aut($A$) is an action of a finite group $G$ on $A$‎ ‎which has a certain non-simple tracial Rokhlin property‎. ‎Then the crossed product algebra‎ ‎$C^*(G,A,alpha)$ is a unital local traci...

متن کامل

Operads of higher transformations for globular sets and for higher magmas

‎In this article we discuss examples of fractal $omega$-operads‎. ‎Thus we show that there is an $omega$-operadic approach to explain existence of‎ ‎the globular set of globular setsfootnote{Globular sets are also called $omega$-graphs by the French School.}‎, ‎the reflexive globular set of reflexive globular sets‎, ‎the $omega$-magma of $omega$-magmas‎, ‎and also the reflexive $omega$-magma ...

متن کامل

Omega-almost Boolean rings

In this paper the concept of an $Omega$- Almost Boolean ring is introduced and illistrated how a sheaf of algebras can be constructed from an $Omega$- Almost Boolean ring over a locally Boolean space.

متن کامل

Complicial Structures in the Nerves of Omega-categories

It is known that strict omega-categories are equivalent through the nerve functor to complicial sets and to sets with complicial identities. It follows that complicial sets are equivalent to sets with complicial identities. We discuss these equivalences. In particular we give a conceptual proof that the nerves of omega-categories are complicial sets, and a direct proof that complicial sets are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013